1	(i)	State $\mathrm{f}(x) \leq 10$	B1	1 [Any equiv but must be or imply \leq]
	(ii)	Attempt correct process for composition of functions Obtain 6 or correct expression for $\mathrm{ff}(x)$ Obtain - 71	M1 A1 A1	[whether algebraic or numerical]
2		Either Obtain $x=0$ Form linear equation with signs of $6 x$ and x different State $6 x-1=-x+1$ Obtain $\frac{2}{7}$ and no other non-zero value	B1 M1 A1 A1	[ignoring errors in working] [ignoring other sign errors] [or correct equiv with or without brackets] 4 [or exact equiv]
	Or	Obtain $36 x^{2}-12 x+1=x^{2}-2 x+1$ Attempt to solve quadratic equation Obtain $\frac{2}{7}$ and no other non-zero value Obtain 0	B1 M1 A1 B1	[or equiv] [as far as factorisation or subn into formula] [or exact equiv] (4) [ignoring errors in working]
3	(i)	Attempt solution involving (natural) logarithm Obtain $-0.017 t=\ln \frac{25}{180}$ Obtain 116	M1 A1 A1	[or equiv] 3 [or greater accuracy rounding to 116]
	(ii)	Differentiate to obtain $k \mathrm{e}^{-0.017 t}$ Obtain correct $-3.06 \mathrm{e}^{-0.017 t}$ Obtain 1.2	M1 A1 A1	[any constant k different from 180; solution must involve differentiation] [or unsimplified equiv; accept + or -] 3 [or greater accuracy; accept + or - answer]
4	(a)	State or imply $\int \pi y^{2} \mathrm{~d} x$ Integrate to obtain $k \ln x$ Obtain $4 \pi \ln x$ or $4 \ln x$ Obtain $4 \pi \ln 5$	B1 M1 A1 A1	[any constant k, involving π or not; or equiv such as $k \ln 4 x$] [or equiv] 4 [or similarly simplified equiv]

	(b)	Attempt calculation involving attempts at y values Attempt $\frac{1}{3} \times 1\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)$ Obtain $\frac{1}{3}(\sqrt{2}+4 \sqrt{5}+2 \sqrt{10}+4 \sqrt{17}+\sqrt{26})$ Obtain 12.758	M1 M1 A1 A1	[with each of $1,4,2$ present at least once as coefficients] [with attempts at five y values] [or exact equiv or decimal equivs] 4 [or greater accuracy]
5	(i)	Obtain $R=\sqrt{13}$, or 3.6 or 3.61 or greater accuracy Attempt recognisable process for finding α Obtain $\alpha=33.7$	B1 M1 A1	[allow sine/cosine muddles] 3 [or greater accuracy]
	(ii)	Attempt to find at least one value of $\theta+\alpha$ Obtain value rounding to 76 or 104 Subtract their α from at least one value Obtain one value rounding to 42 or 43 , or to 70 Obtain other value 42.4 or 70.2	*M1 A1 $\sqrt{ }$ M1 A1 A1	[following their R] [dependent on *M] 5 [or greater accuracy; no other answers between 0 and 360 ; ignore answers outside 0 to 360]
6	(a)	Attempt use of product rule Obtain $\ln x+1$ Equate attempt at first derivative to zero and obtain value involving e Obtain e^{-1}	*M1 A1 M1 A1	[or unsimplified equiv] [dependent on ${ }^{*} \mathbf{M}$] 4 [or exact equiv]
	(b)	Attempt use of quotient rule Obtain $\frac{(4 x-c) 4-4(4 x+c)}{(4 x-c)^{2}}$ Show that first derivative cannot be zero	M1 A1 A1	[or equiv using product rule or ...] [or equiv] 3 [AG; derivative must be correct]
7	(i)	State $2 \cos ^{2} x-1$	B1	1
	(ii)	Attempt to express left hand side in terms of $\cos x$ Identify $\frac{1}{\cos x}$ as $\sec x$	M1	[using expression of form $a \cos ^{2} x+b$] [maybe implied]

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Confirm result \& A1 \& 3 [AG; necessary detail required] \\
\hline \& (iii) \& \begin{tabular}{l}
Use identity \(\sec ^{2} x=1+\tan ^{2} x\) \\
Attempt solution of quadratic equation in tan \(x\) \\
Obtain \(2 \tan ^{2} x+3 \tan x-9=0\) and hence \(\tan\) \(x=-3, \frac{3}{2}\) \\
Obtain at least two of 0.983, 4.12, 1.89, 5.03 \\
(or of \(0.313 \pi, 1.31 \pi, 0.602 \pi, 1.60 \pi\)) \\
Obtain all four solutions
\end{tabular} \& B1
M1
A1
A1

A1 \& | [or equiv] |
| :--- |
| [allow answers with only 2 s.f.; allow greater accuracy; allow $0.983+\pi, 1.89+\pi$ allow degrees: 56, 236, 108, 288] 5 [now with at least 3 s.f.; must be radians; no other solutions in the range 0-2 π, ignore solutions outside range $0-2 \pi$] | \\

\hline \multirow[t]{3}{*}{8} \& (i) \& | Attempt relevant calculations with 5.2 and 5.3 |
| :--- |
| Obtain correct values |
| Conclude appropriately | \& M1

A1

A1 \& | $\begin{array}{lccc} x & y_{1} & y_{2} & y_{1}-y_{2} \\ 5.2 & 2.83 & 2.87 & -0.04 \\ 5.3 & 2.89 & 2.88 & 0.006 \end{array}$ |
| :--- |
| 3 [AG; comparing y values or noting sign change in difference in y values or equiv] | \\

\hline \& (ii) \& | Equate expressions and attempt rearrangement to $x=$ |
| :--- |
| Obtain $x=\frac{5}{3} \ln (3 x+8)$ | \& M1

A1 \& 2 [AG; necessary detail required] \\

\hline \& (iii) \& | Obtain correct first iterate |
| :--- |
| Carry out correct process to find at least two iterates in all |
| Obtain 5.29 | \& | B1 |
| :--- |
| M1 |
| A1 | \& 3 [must be exactly 2 decimal places;

$$
\begin{aligned}
& 5.2 \rightarrow 5.2687 \rightarrow 5.2832 \rightarrow 5.2863 \rightarrow 5.2869 ; \\
& 5.25 \rightarrow 5.2793 \rightarrow 5.2855 \rightarrow 5.2868 \rightarrow 5.2870 ; \\
& 5.3 \rightarrow 5.2898 \rightarrow 5.2877 \rightarrow 5.2872 \rightarrow 5.2871]
\end{aligned}
$$ \\

\hline \& (iv) \& Obtain integral of form $k(3 x+8)^{\frac{4}{3}}$ Obtain integral of form $k \mathrm{e}^{\frac{1}{5} x}$ \& M1
M1 \& \\
\hline
\end{tabular}

		Obtain $\frac{1}{4}(3 x+8)^{\frac{4}{3}}-5 \mathrm{e}^{\frac{1}{5} x}$ Apply limits 0 and their answer to (iii) Obtain 3.78	A1 M1 A1	[or equiv] [applied to difference of two integrals] 5 [or greater accuracy]
9	(i)	Indicate stretch and (at least one) translation State translation by 7 units in negative x direction State stretch in x direction with factor $1 / m$ Indicate translation by 4 units in negative y direction	M1 A1 A1 B1	[... in general terms] [or equiv; using correct terminology] [must follow the translation by 7; or equiv; using correct terminology] 4 [or equiv; at any stage; the two translations may be combined]
	(ii)	Refer to each y value being image of unique x value Attempt correct process for finding inverse Obtain expression involving $(x+4)^{2}$ or $(y+4)^{2}$ Obtain $\frac{(x+4)^{2}-7}{m}$	B1 M1 M1 A1	[or equiv] 4 [or equiv]
	(iii)	Refer to fact that curves are reflections of each other in line $y=x$ Attempt arrangement of either $\mathrm{f}(x)=x$ or $\mathrm{f}^{-1}(x)=x$ Apply discriminant to resulting quadratic equati on Obtain $(m-2)(m-14)<0$ Obtain $2<m<14$	B1 M1 M1 A1 A1	[or equiv] [or equiv] 5

